Back to Search Start Over

Thermochemical Transformation of Calcium during Biomass Burning and the Effects on Postfire Aqueous Dissolution of Macronutrients.

Authors :
Huang R
Nicholas S
Wei Z
Source :
Environmental science & technology [Environ Sci Technol] 2024 Oct 01; Vol. 58 (39), pp. 17304-17312. Date of Electronic Publication: 2024 Sep 18.
Publication Year :
2024

Abstract

Calcium is commonly the most abundant element in fire residues and its speciation largely determines the geochemical properties of fire residues and their effects on postfire soil chemistry. To explore the effects of biomass composition and fire conditions on ash Ca speciation, this study characterizes the speciation of Ca in charcoal and ash samples that were derived from different plant compartments and thermal conditions, using Ca K-edge X-ray absorption near edge spectroscopy. Results showed that biomass contains abundant organic Ca complexes, which were mineralized into fairchildite and calcite after heating at 450 to 600 °C and then CaO, as temperature increased to 750 °C. Apatite could be an abundant Ca species in fire residues if the Ca/P molar ratio of the biomass is small (<2). The mineralization of organic Ca to the identified Ca minerals during burning was negligibly affected by the oxygen level. Calcium speciation in prescribed fire residues resembled that of biomass ash burned at 550 °C with similar Ca/P molar ratios. Batch experiments showed that macronutrients (Ca, Mg, K, and P) were differentially released, as a result of different solubility of minerals in ashes and reprecipitation of minerals. The aqueous solubility of Ca, Mg, and P decreased as pH increased from 5 to 9, while K showed no pH dependency and was almost completely soluble. Results from this study improve our understanding of the chemistry of fire residues and their geochemical behaviors, which can help evaluate the impact of fire on postfire soil properties and macronutrient cycling.

Details

Language :
English
ISSN :
1520-5851
Volume :
58
Issue :
39
Database :
MEDLINE
Journal :
Environmental science & technology
Publication Type :
Academic Journal
Accession number :
39350656
Full Text :
https://doi.org/10.1021/acs.est.4c04820