Back to Search Start Over

The combined effects of polystyrene nanoplastics and dissolved organic matter on the environmental bioavailability of carbamazepine.

Authors :
Wang Z
Qin L
Li Z
Liu M
Hu X
Yin D
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Oct 06; Vol. 480, pp. 136031. Date of Electronic Publication: 2024 Oct 06.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

The bioavailability of active pharmaceutical ingredients (APIs) plays a crucial role in determining the toxicity and risk of contaminants in the environment. However, the bioavailability of APIs in complex environmental matrices is still unclear. In this study, the combined effects of polystyrene nanoplastics (PS NPs) with various particle sizes (50, 100, and 1000 nm) and fulvic acid (FA) on the bioavailability of carbamazepine (CBZ) were investigated via negligible depletion solid-phase microextraction (nd-SPME) and Daphnia magna (D. magna) accumulation. The uptake kinetic study revealed that both PS NPs and FA reduced the elimination rate (k <subscript>2</subscript> ) in most cases. The availability of CBZ to nd-SPME was determined by the hydrodynamic particle size of PS NPs, whereas the bioavailability to D. magna depended on the intrinsic particle size. The CBZ bioavailability was greater in co-exposed matrices due to the attenuated sorption of PS NPs to CBZ by FA modification. Notably, co-exposure of PS NPs and FA resulted in a higher bioaccumulation factor (BAF) of CBZ, probably due to the desorption and reabsorption of particle-associated CBZ. This study demonstrated that both PS NP particle size and FA binding affect the bioavailability of CBZ, and nd-SPME can mimic only the bioaccumulation of CBZ via diffusion.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
480
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
39388862
Full Text :
https://doi.org/10.1016/j.jhazmat.2024.136031