Back to Search Start Over

Quaternary Mixed Oxides of Non-Noble Metals with Enhanced Stability during the Oxygen Evolution Reaction.

Authors :
Piñeiro-García A
Wu X
Canto-Aguilar EJ
Kuzhikandathil A
Rafei M
Gracia-Espino E
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Oct 13. Date of Electronic Publication: 2024 Oct 13.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Robust electrocatalysts required to drive the oxygen evolution reaction (OER) during water electrolysis are still a missing component toward the path for sustainable hydrogen production. Here a new family of OER active quaternary mixed-oxides based on X-Sn-Mo-Sb (X = Mn, Fe, Co, or Ni) is reported. These nonstoichiometric mixed oxides form a rutile-type crystal structure with a random atomic motif and diverse oxidation states, leading to the formation of cation vacancies and local disorder. The successful incorporation of all cations into a rutile structure was achieved using oxidizing agents that facilitates the formation of Sb <superscript>5+</superscript> required to form the characteristic octahedral coordination in rutile. The mixed oxides exhibit enhanced stability in both acidic and alkaline environments under anodic potentials with no changes in their crystal structure after extensive electrochemical stress. The improved stability of these mixed oxides highlights their potential application as scaffolds to host and stabilize OER active metals.

Details

Language :
English
ISSN :
1944-8252
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
39396245
Full Text :
https://doi.org/10.1021/acsami.4c10234