Back to Search Start Over

Metabolic pathways regulated by strigolactones foliar spraying enhance osmoregulation and antioxidant defense in drought-prone soybean.

Authors :
Cao L
Zhang S
Feng L
Qiang B
Ma W
Cao S
Gong Z
Zhang Y
Source :
BMC plant biology [BMC Plant Biol] 2024 Oct 18; Vol. 24 (1), pp. 980. Date of Electronic Publication: 2024 Oct 18.
Publication Year :
2024

Abstract

Background: Drought stress is a significant abiotic stressor that hinders growth, development, and crop yield in soybeans. Strigolactones (SLs) positively regulate plant resistance to drought stress. However, the impact of foliar application of SLs having different concentrations on soybean growth and metabolic pathways related to osmoregulation remains unknown. Therefore, to clarify the impact of SLs on soybean root growth and cellular osmoregulation under drought stress, we initially identified optimal concentrations and assessed key leaf and root indices. Furthermore, we conducted transcriptomic and metabolic analyses to identify differential metabolites and up-regulated genes.<br />Results: The results demonstrated that drought stress had a significant impact on soybean biomass, root length, root surface area, water content and photosynthetic parameters. However, when SLs were applied through foliar application at appropriate concentrations, the accumulation of ABA and soluble protein increased, which enhanced drought tolerance of soybean seedlings by regulating osmotic balance, protecting membrane integrity, photosynthesis and activating ROS scavenging system. This also led to an increase in soybean root length, lateral root number and root surface area. Furthermore, the effects of different concentrations of SLs on soybean leaves and roots were found to be time-sensitive. However, the application of 0.5 µM SLs had the greatest beneficial impact on soybean growth and root morphogenesis under drought stress. A total of 368 differential metabolites were screened in drought and drought plus SLs treatments. The up-regulated genes were mainly involved in nitrogen compound utilization, and the down-regulated metabolic pathways were mainly involved in maintaining cellular osmoregulation and antioxidant defenses.<br />Conclusions: SLs enhance osmoregulation in soybean plants under drought stress by regulating key metabolic pathways including Arachidonic acid metabolism, Glycerophospholipid metabolism, Linoleic acid metabolism, and Flavone and flavonol biosynthesis. This study contributes to the theoretical understanding of improving soybean adaptability and survival in response to drought stress.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1471-2229
Volume :
24
Issue :
1
Database :
MEDLINE
Journal :
BMC plant biology
Publication Type :
Academic Journal
Accession number :
39420293
Full Text :
https://doi.org/10.1186/s12870-024-05663-8