Back to Search Start Over

Target Discovery of Dhilirane-Type Meroterpenoids by Biosynthesis Guidance and Tailoring Enzyme Catalysis.

Authors :
Sun Z
Wu M
Zhong B
Wu J
Liu D
Ren J
Fan S
Lin W
Fan A
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2024 Nov 06; Vol. 146 (44), pp. 30242-30251. Date of Electronic Publication: 2024 Oct 25.
Publication Year :
2024

Abstract

Dhilirane-type meroterpenoids (DMs) featuring a 6/6/6/5/5 ring system represent a rare group of fungal meroterpenoids. To date, merely 11 DMs have been isolated or derived, leaving their chemical diversity predominantly unexplored. Herein, we leverage an understanding of biosynthesis to develop a workflow for discovery of DMs by genome mining, metabolite analysis, and tailoring enzyme catalysis. Twenty-three new DMs, including seven unprecedented scaffolds, were consequently identified. An α-ketoglutarate (α-KG)-dependent oxygenase DhiD was found to catalyze the stereodivergent ring contraction of dhilirolide D to form the dhilirane skeleton; while the cytochrome P450 DhiH reshaped the structural diversity by establishing diverse C-C bonds and oxidation. Crystallographic and mutagenesis experiments provide a molecular basis for the DhiD reaction and its stereodivergent products. Notably, DhiD exhibits substrate-controlled catalytic versatility in the chemical expansion of DMs through ring contraction, hydroxylation, dehydrogenation, epoxidation, isomerization, epimerization, and α-ketol cleavage. Bioassay results demonstrated that the obtained meroterpenoids exhibited anti-inflammatory and insecticidal activities. Our work provides insight into nature's arsenal for DM biosynthesis and the functional versatility of α-KG-dependent oxygenase and P450, which can be applied for target discovery and diversification of DM-type natural products.

Details

Language :
English
ISSN :
1520-5126
Volume :
146
Issue :
44
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
39454086
Full Text :
https://doi.org/10.1021/jacs.4c09298