Back to Search Start Over

Affinity peptide-based electrochemical biosensor with 2D-2D nanoarchitecture of nickel-chromium-layered double hydroxide and graphene oxide nanosheets for chirality detection of symmetric dimethylarginine.

Authors :
Shin JH
Padalkar NS
Yang HJ
Shingade JA
Park JP
Source :
Biosensors & bioelectronics [Biosens Bioelectron] 2025 Jan 01; Vol. 267, pp. 116871. Date of Electronic Publication: 2024 Oct 22.
Publication Year :
2025

Abstract

The accurate assessment of kidney dysfunction is crucial in clinical practice, necessitating the exploration of reliable biomarkers. However, current methods for measuring SDMA often fall short in terms of sensitivity and specificity. In this study, we employed phage display technology to identify high affinity peptides that specifically bind to SDMA. The selected peptide was subsequently integrated into a novel Ni-Cr layered double hydroxide-graphene oxide (NCL-GO) nanoarchitecture. We characterized the electrochemical properties of the biosensor using cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry, systematically evaluating critical parameters such as limit of detection (LOD), reproducibility, and performance in complex biological matrices including urine. The NCL-GO architecture not only enhances the surface area available for electrochemical reactions but also facilitates rapid electron transfer kinetics which are essential for the accurate quantification of small molecule, SDMA. The electrochemical biosensor exhibited an outstanding limit of detection of 0.1 ng/mL in the 0-1 ng/mL range and 7.2 ng/mL in the 1-100 ng/mL range, demonstrating exceptional sensitivity and specificity for SDMA. Furthermore, the biosensor displayed excellent reproducibility with a relative standard deviation of 4.9%. Notably, it maintained robust chirality sensing capabilities, even in complex biological fluids. These findings suggest that this biosensor could play a pivotal role in early disease diagnosis and therapeutic monitoring, ultimately improving clinical outcomes and advancing biomedical research.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4235
Volume :
267
Database :
MEDLINE
Journal :
Biosensors & bioelectronics
Publication Type :
Academic Journal
Accession number :
39461099
Full Text :
https://doi.org/10.1016/j.bios.2024.116871