Back to Search Start Over

A Combined Experimental and Computational Exploration of Heteroleptic cis-Pd 2 L 2 L' 2 Coordination Cages through Geometric Complementarity.

Authors :
Tarzia A
Shan W
Posligua V
Cox CJT
Male L
Egleston BD
Greenaway RL
Jelfs KE
Lewis JEM
Source :
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Oct 27, pp. e202403336. Date of Electronic Publication: 2024 Oct 27.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Heteroleptic (mixed-ligand) coordination cages are of interest as host systems with more structurally and functionally complex cavities than homoleptic architectures. The design of heteroleptic cages, however, is far from trivial. In this work, we experimentally probed the self-assembly of Pd(II) ions with binary ligand combinations in a combinatorial fashion to search for new cis-Pd <subscript>2</subscript> L <subscript>2</subscript> L' <subscript>2</subscript> heteroleptic cages. A hierarchy of computational analyses was then applied to these systems with the aim of elucidating key factors for rationalising self-assembly outcomes. Simple and inexpensive geometric analyses were shown to be effective in identifying complementary ligand pairs. Preliminary results demonstrated the viability of relatively rapid semi-empirical calculations for predicting the topology of thermodynamically favoured assemblies with rigid ligands, whilst more flexible systems proved challenging. Stemming from this, key challenges were identified for future work developing effective computational forecasting tools for self-assembled metallo-supramolecular systems.<br /> (© 2024 The Author(s). Chemistry - A European Journal published by Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1521-3765
Database :
MEDLINE
Journal :
Chemistry (Weinheim an der Bergstrasse, Germany)
Publication Type :
Academic Journal
Accession number :
39462213
Full Text :
https://doi.org/10.1002/chem.202403336