Back to Search Start Over

Energy-Transfer Enabled 1,4-Aryl Migration.

Authors :
Wen SY
Chen JJ
Zheng Y
Han JX
Huang HM
Source :
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2025 Jan 15; Vol. 64 (3), pp. e202415495. Date of Electronic Publication: 2024 Nov 20.
Publication Year :
2025

Abstract

Functional group translocation is undoubtedly a pivotal synthetic transformation in organic chemistry. Numerous types of reactions involving radical 1,2-aryl or 1,4-aryl migration via electron transfer mechanism have been extensively investigated. Nevertheless, energy-transfer enabled 1,4-arylation remains unknown. Herein we disclose that an unprecedented di-π-ethane rearrangement featuring 1,4-aryl migration facilitated by energy transfer catalysis under visible light conditions. The newly developed mild protocol exhibits tolerance towards diverse functional groups and enables the migration of a multitude of aromatic rings, encompassing both electron-withdrawing and electron-rich functional groups. The open-shell strategy has also found successful application in the modification of several drugs. Large-scale experiments, continuous-flow experiment, and versatile manipulation of products have demonstrated the robustness and potential utility of this synthetic method. Preliminary mechanistic studies have supported the involvement of radical species in this di-π-ethane rearrangement and have also provided evidence for the energy transfer mechanism.<br /> (© 2024 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
1521-3773
Volume :
64
Issue :
3
Database :
MEDLINE
Journal :
Angewandte Chemie (International ed. in English)
Publication Type :
Academic Journal
Accession number :
39498962
Full Text :
https://doi.org/10.1002/anie.202415495