Back to Search
Start Over
Photochemical Metal-Free synthesis and biological Assessment of isocryptolepine analogues targeting estrogen receptor Alpha in breast cancer cells.
- Source :
-
Bioorganic chemistry [Bioorg Chem] 2024 Dec; Vol. 153, pp. 107942. Date of Electronic Publication: 2024 Nov 05. - Publication Year :
- 2024
-
Abstract
- The aim of this study was to develop a new series of isocryptolepines and evaluate their antiproliferative and antiestrogenic activities on cancer cells. A series of isocryptolepine derivatives were synthesized using developed one-pot photochemical, metal-free protocol, employing readily available 2-arylindoles as starting compounds. The resulting isocryptolepines demonstrated (sub)micromolar inhibitory activity against selected breast cancer cell lines. The IC50 values of lead compound 3c against hormone-dependent breast cancer types (MCF7 and T47D) were 0.3 μM and 0.12 μM, respectively, and significantly greater than 3 μM against estrogen receptor α (ERα)-deficient cell lines, MDA-MB-231 and HCC1954, respectively. To assess the antiestrogenic potency of compound 3c, MCF7 cells were transfected with a plasmid containing a luciferase reporter gene under the control of an estrogen-responsive element (ERE), creating the MCF7/ERE-LUC cell subline. In these cells, luciferase activity was induced by the natural ERα ligand, 17β-estradiol (E2). Compound 3c inhibited luciferase activity by 50 % at a concentration of 0.12 μM, highlighting its potent inhibitory effect on ERα. Molecular modeling further indicated that compound 3c could directly bind to ERα. Compound 3c induced apoptosis, as evidenced by PARP cleavage and downregulation of p-Bcl-2 and Bcl-2, and demonstrated synergistic effects in combination with the chemotherapeutic agent 5-fluorouracil. Compound 3c also showed selectivity towards hormone-dependent breast cancer cells, likely targeting ERα - a key driver in this cancer subtype. In summary, we report the development of a first-in-class antiestrogenic isocryptolepine with notable pro-apoptotic efficacy.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. All listed authors have contributed to the manuscript substantially and have agreed to the final submitted version.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Subjects :
- Humans
Structure-Activity Relationship
Molecular Structure
Female
Dose-Response Relationship, Drug
Cell Line, Tumor
Apoptosis drug effects
Photochemical Processes
Indole Alkaloids pharmacology
Indole Alkaloids chemistry
Indole Alkaloids chemical synthesis
Estrogen Receptor alpha metabolism
Estrogen Receptor alpha antagonists & inhibitors
Breast Neoplasms drug therapy
Breast Neoplasms pathology
Breast Neoplasms metabolism
Cell Proliferation drug effects
Antineoplastic Agents pharmacology
Antineoplastic Agents chemical synthesis
Antineoplastic Agents chemistry
Drug Screening Assays, Antitumor
Subjects
Details
- Language :
- English
- ISSN :
- 1090-2120
- Volume :
- 153
- Database :
- MEDLINE
- Journal :
- Bioorganic chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 39515131
- Full Text :
- https://doi.org/10.1016/j.bioorg.2024.107942