Back to Search Start Over

Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene.

Authors :
Zhang Y
Zhou YY
Zhang S
Cai H
Tong LH
Liao WY
Zou RJ
Xue SM
Tian Y
Chen T
Tian Q
Zhang C
Wang Y
Zou X
Liu X
Hu Y
Ren YN
Zhang L
Zhang L
Wang WX
He L
Liao L
Qin Z
Yin LJ
Source :
Nature nanotechnology [Nat Nanotechnol] 2024 Nov 13. Date of Electronic Publication: 2024 Nov 13.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here we show the observation of layer-dependent electronic structures and correlations-under surprising liquid nitrogen temperature-in RG multilayers from 3 to 9 layers by using scanning tunnelling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50 meV to 80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases.<br />Competing Interests: Competing interests: The authors declare no competing interests.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)

Details

Language :
English
ISSN :
1748-3395
Database :
MEDLINE
Journal :
Nature nanotechnology
Publication Type :
Academic Journal
Accession number :
39537827
Full Text :
https://doi.org/10.1038/s41565-024-01822-y