Back to Search Start Over

Topographic and quantitative correlation of structure and function using deep learning in subclinical biomarkers of intermediate age-related macular degeneration.

Authors :
Birner K
Reiter GS
Steiner I
Deák G
Mohamed H
Schürer-Waldheim S
Gumpinger M
Bogunović H
Schmidt-Erfurth U
Source :
Scientific reports [Sci Rep] 2024 Nov 15; Vol. 14 (1), pp. 28165. Date of Electronic Publication: 2024 Nov 15.
Publication Year :
2024

Abstract

To examine the morphological impact of deep learning (DL)-quantified biomarkers on point-wise sensitivity (PWS) using microperimetry (MP) and optical coherence tomography (OCT) in intermediate AMD (iAMD). Patients with iAMD were examined by OCT (Spectralis). DL-based algorithms quantified ellipsoid zone (EZ)-thickness, hyperreflective foci (HRF) and drusen volume. Outer nuclear layer (ONL)-thickness and subretinal drusenoid deposits (SDD) were quantified by human experts. All patients completed four MP examinations using an identical custom 45 stimuli grid on MP-3 (NIDEK) and MAIA (CenterVue). MP stimuli were co-registered with corresponding OCT using image registration algorithms. Multivariable mixed-effect models were calculated. 3.600 PWS from 20 eyes of 20 patients were analyzed. Decreased EZ thickness, decreased ONL thickness, increased HRF and increased drusen volume had a significant negative effect on PWS (all p < 0.001) with significant interaction with eccentricity (p < 0.001). Mean PWS was 26.25 ± 3.43 dB on MP3 and 22.63 ± 3.69 dB on MAIA. Univariate analyses revealed a negative association of PWS and SDD (p < 0.001). Subclinical changes in EZ integrity, HRF and drusen volume are quantifiable structural biomarkers associated with reduced retinal function. Topographic co-registration between structure on OCT volumes and sensitivity in MP broadens the understanding of pathognomonic biomarkers with potential for evaluation of quantifiable functional endpoints.<br />Competing Interests: Competing interests The authors declare no competing interests.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2045-2322
Volume :
14
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
39548108
Full Text :
https://doi.org/10.1038/s41598-024-72522-9