Back to Search
Start Over
The synergistic enhancement or inhibition of different molecular weight components of mannoproteins after ultrafiltration on the encapsulation.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 Dec; Vol. 283 (Pt 3), pp. 137684. Date of Electronic Publication: 2024 Nov 15. - Publication Year :
- 2024
-
Abstract
- This study investigated the effects of molecular weight regulation on mannoproteins (MPs) in encapsulating both monomeric and oligomeric proanthocyanidins (MOPC). To achieve this, two different conformations of MPs were fractionated by ultrafiltration into two main molecular weight components. The results indicated that regulating molecular weight through ultrafiltration altered the conformation of MPs chains, which in turn affected the intermolecular forces with MOPC. Specifically, the interactions among the different molecular weight components of MPs formed a cross-linking network. High molecular weight components provided external support to this network, while low molecular weight components contributed to internal stabilization. The dense, flexible, and irregular coil structure of MPs facilitated the entry of MOPC into the internal spaces of the cross-linking network. Additionally, protein unfolding into a more stable β-sheet structure further stabilized MPs' cross-linking network, enhancing its capacity to encapsulate MOPC. The presence of more hydrophobic regions and positive charges within the proteins increased the number of binding sites for MOPC. This study aimed to identify the primary structural forms of MPs with potent initial bitter inhibition capabilities on MOPC, and a proposed ultrafiltration method was introduced to modify the triple helix structure of polysaccharide, offering a foundational theoretical framework for enhancing the functional attributes of current or prospective MPs. Additionally, the mixed regulation of polysaccharides with varying conformations was also beneficial for guiding the production of high-efficiency polysaccharide products.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 283
- Issue :
- Pt 3
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 39549814
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.137684