Back to Search
Start Over
Smart β-cyclodextrin-dominated helical supramolecular dendritic assemblies improve the foliar affinity and biofilm disruption for treating alarming bacterial diseases.
- Source :
-
Carbohydrate polymers [Carbohydr Polym] 2025 Jan 15; Vol. 348 (Pt A), pp. 122823. Date of Electronic Publication: 2024 Oct 09. - Publication Year :
- 2025
-
Abstract
- Recent outbreaks of alarming bacterial diseases have significantly impacted global agricultural productivity. Conventional bactericides exhibit certain limitations in efficiently impeding biofilm formation and annihilating biofilm-dispersed pathogens, and often expose to high off-target movement during foliar spraying. Here, we produce an innovative helical dendrimer-like supramolecular material (PhA28@β-CD) assembled by a bioactive small-molecule 2-chlorophenylisopropanolamine (PhA28) and β-cyclodextrin (β-CD) through host-guest recognition principle. In this system, the advisable optimization by a macrocyclic oligosaccharide-β-CD significantly enhances the water-solubility, biocompatibility, and bioavailability of PhA28. At a low-dose of 6.8 μg/mL, PhA28@β-CD discloses an outstanding biofilm disruption rate of 82.4 %, notably exceeding that of PhA28 (60.6 %), which thereby reduces the biofilm-associated virulence. Meanwhile, the self-assembled PhA28@β-CD possesses superior wetting and dispersing properties on hydrophobic leaves, leading to effective foliar deposition and prolong retention of active components. In vivo studies reveal that PhA28@β-CD exhibits superior curative (66.0 %) and protective (72.6 %) activities against citrus canker at 200 μg/mL, markedly surpassing those of the existing bactericide thiodiazole‑copper (46.8 % and 52.2 %) and single PhA28. This material also has broad-spectrum control efficiency (53.0 % ~ 59.5 %) against rice bacterial blight. This research lays the groundwork for developing carbohydrate-optimized multifunctional dendrimer-like assemblies aimed at disrupting biofilms and improving sustained bioavailability to combat bacterial diseases.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1344
- Volume :
- 348
- Issue :
- Pt A
- Database :
- MEDLINE
- Journal :
- Carbohydrate polymers
- Publication Type :
- Academic Journal
- Accession number :
- 39562098
- Full Text :
- https://doi.org/10.1016/j.carbpol.2024.122823