Back to Search
Start Over
Agarooligosaccharides as a novel concept in prebiotics: selective inhibition of Ruminococcus gnavus and Fusobacterium nucleatum while preserving Bifidobacteria, Lactobacillales in vitro , and inhibiting Lachnospiraceae in vivo .
- Source :
-
Microbiology (Reading, England) [Microbiology (Reading)] 2024 Nov; Vol. 170 (11). - Publication Year :
- 2024
-
Abstract
- Recent studies have linked Ruminococcus gnavus to inflammatory bowel disease and Fusobacterium nucleatum to various cancers. Agarooligosaccharides (AOS), derived from the acid hydrolysis of agar, have shown significant inhibitory effects on the growth of R. gnavus and F. nucleatum at concentrations of 0.1 and 0.2%, respectively. RNA sequencing and quantitative reverse-transcription PCR analyses revealed the downregulation of fatty acid biosynthesis genes ( fab genes) in these bacteria when exposed to 0.1% AOS. Furthermore, AOS treatment altered the fatty acid composition of R. gnavus cell membranes, increasing medium-chain saturated fatty acids (C8, C10) and C18 fatty acids while reducing long-chain fatty acids (C14, C16). In contrast, no significant growth inhibition was observed in several strains of Bifidobacteria and Lactobacillales at AOS concentrations of 0.2 and 2%, respectively. Co-culture experiments with R. gnavus and Bifidobacterium longum in 0.2% AOS resulted in B. longum dominating the population, constituting over 96% post-incubation. In vivo studies using mice demonstrated a significant reduction in the Lachnospiraceae family, to which R. gnavus belongs, following AOS administration. Quantitative PCR also showed lower levels of the nan gene, potentially associated with immune disorders, in the AOS group. These findings suggest that AOS may introduce a novel concept in prebiotics by selectively inhibiting potentially pathogenic bacteria while preserving beneficial bacteria such as Bifidobacteria and Lactobacillales.
- Subjects :
- Animals
Mice
Clostridiales genetics
Clostridiales metabolism
Clostridiales growth & development
Ruminococcus genetics
Ruminococcus metabolism
Fatty Acids metabolism
Humans
Fusobacterium nucleatum drug effects
Fusobacterium nucleatum genetics
Fusobacterium nucleatum metabolism
Prebiotics
Oligosaccharides pharmacology
Oligosaccharides metabolism
Bifidobacterium metabolism
Bifidobacterium genetics
Bifidobacterium drug effects
Bifidobacterium growth & development
Subjects
Details
- Language :
- English
- ISSN :
- 1465-2080
- Volume :
- 170
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Microbiology (Reading, England)
- Publication Type :
- Academic Journal
- Accession number :
- 39570663
- Full Text :
- https://doi.org/10.1099/mic.0.001510