Back to Search
Start Over
Tip-Induced 3D Printing on the Nanoscale with Field Emission Scanning Probes.
- Source :
-
Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Dec 18, pp. e2409035. Date of Electronic Publication: 2024 Dec 18. - Publication Year :
- 2024
- Publisher :
- Ahead of Print
-
Abstract
- 3D printing down to the nanoscale remains a significant challenge. In this paper, the study explores the use of scanning probes that emit low-energy electrons (<100 eV) coupled with the localized injection and electron-induced decomposition of precursor molecules, for the precise localized deposition of 3D nanostructures. The experiments are performed inside the chamber of a scanning electron microscope (SEM), enabling the use of the in-built gas injector system (GIS) with gaseous naphthalene precursor for carbon deposition, as well as immediate inspection of the deposits by SEM. Substrate materials are planar fused silica with thin conductive coatings and non-planar copper wedges. After investigation of the deposition process parameters, various 2D and 3D carbon deposits are grown. Vertical nanowires several microns in length with a diameter <100 nm are achieved and 3D deposits with a high degree of nanoscale branching are also obtained, presumably due to a charging effect. High aspect ratio carbon nanostructures such as those demonstrated here can be employed as miniaturized electrodes or field emitters. The tip-based approach presented thus paves the way toward 3D nanoscale printing of various materials and functional nanostructures.<br /> (© 2024 The Author(s). Small published by Wiley‐VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1613-6829
- Database :
- MEDLINE
- Journal :
- Small (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 39692177
- Full Text :
- https://doi.org/10.1002/smll.202409035