Back to Search Start Over

MedShapeNet  - a large-scale dataset of 3D medical shapes for computer vision.

Authors :
Li J
Zhou Z
Yang J
Pepe A
Gsaxner C
Luijten G
Qu C
Zhang T
Chen X
Li W
Wodzinski M
Friedrich P
Xie K
Jin Y
Ambigapathy N
Nasca E
Solak N
Melito GM
Vu VD
Memon AR
Schlachta C
De Ribaupierre S
Patel R
Eagleson R
Chen X
Mächler H
Kirschke JS
de la Rosa E
Christ PF
Li HB
Ellis DG
Aizenberg MR
Gatidis S
Küstner T
Shusharina N
Heller N
Andrearczyk V
Depeursinge A
Hatt M
Sekuboyina A
Löffler MT
Liebl H
Dorent R
Vercauteren T
Shapey J
Kujawa A
Cornelissen S
Langenhuizen P
Ben-Hamadou A
Rekik A
Pujades S
Boyer E
Bolelli F
Grana C
Lumetti L
Salehi H
Ma J
Zhang Y
Gharleghi R
Beier S
Sowmya A
Garza-Villarreal EA
Balducci T
Angeles-Valdez D
Souza R
Rittner L
Frayne R
Ji Y
Ferrari V
Chatterjee S
Dubost F
Schreiber S
Mattern H
Speck O
Haehn D
John C
Nürnberger A
Pedrosa J
Ferreira C
Aresta G
Cunha A
Campilho A
Suter Y
Garcia J
Lalande A
Vandenbossche V
Van Oevelen A
Duquesne K
Mekhzoum H
Vandemeulebroucke J
Audenaert E
Krebs C
van Leeuwen T
Vereecke E
Heidemeyer H
Röhrig R
Hölzle F
Badeli V
Krieger K
Gunzer M
Chen J
van Meegdenburg T
Dada A
Balzer M
Fragemann J
Jonske F
Rempe M
Malorodov S
Bahnsen FH
Seibold C
Jaus A
Marinov Z
Jaeger PF
Stiefelhagen R
Santos AS
Lindo M
Ferreira A
Alves V
Kamp M
Abourayya A
Nensa F
Hörst F
Brehmer A
Heine L
Hanusrichter Y
Weßling M
Dudda M
Podleska LE
Fink MA
Keyl J
Tserpes K
Kim MS
Elhabian S
Lamecker H
Zukić D
Paniagua B
Wachinger C
Urschler M
Duong L
Wasserthal J
Hoyer PF
Basu O
Maal T
Witjes MJH
Schiele G
Chang TC
Ahmadi SA
Luo P
Menze B
Reyes M
Deserno TM
Davatzikos C
Puladi B
Fua P
Yuille AL
Kleesiek J
Egger J
Source :
Biomedizinische Technik. Biomedical engineering [Biomed Tech (Berl)] 2024 Dec 30. Date of Electronic Publication: 2024 Dec 30.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models). However, a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instruments is missing.<br />Methods: We present MedShapeNet to translate data-driven vision algorithms to medical applications and to adapt state-of-the-art vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. We present use cases in classifying brain tumors, skull reconstructions, multi-class anatomy completion, education, and 3D printing.<br />Results: By now, MedShapeNet includes 23 datasets with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing.<br />Conclusions: MedShapeNet contains medical shapes from anatomy and surgical instruments and will continue to collect data for benchmarks and applications. The project page is: https://medshapenet.ikim.nrw/.<br /> (© 2024 Walter de Gruyter GmbH, Berlin/Boston.)

Details

Language :
English
ISSN :
1862-278X
Database :
MEDLINE
Journal :
Biomedizinische Technik. Biomedical engineering
Publication Type :
Academic Journal
Accession number :
39733351
Full Text :
https://doi.org/10.1515/bmt-2024-0396