Back to Search
Start Over
Improved tumor radioimmunodetection using a single-chain Fv and gamma-interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning.
- Source :
-
Cancer research [Cancer Res] 1995 Jul 01; Vol. 55 (13), pp. 2858-65. - Publication Year :
- 1995
-
Abstract
- Previous studies have shown that (a) single-chain antibody binding proteins, or sFvs, localize experimental tumor xenografts (D.E. Milenic et al, Cancer Res., 51: 6363-6371, 1991) and (b) the administration of gamma-interferon (IFN-gamma) increases the expression of a high molecular weight glycoprotein, tumor-associated glycoprotein 72 (TAG-72), which improves mAb-based tumor targeting as well as radioimmunotherapy (J. W. Greiner et al., Cancer Res., 53: 600-608, 1993). The present experimental study was designed to determine whether exploiting those two observations in combination could augment tumor detection. Initial results revealed significant localization of a single-chain antibody binding protein of CC49 (i.e., CC49 sFv), a second generation anti-TAG-72 mAb, to human colon tumor xenografts (HT-29), which express low constitutive TAG-72 levels. IFN-gamma treatment of mice bearing HT-29 tumors significantly increased TAG-72 levels in the tumor xenografts. Increased TAG-72 expression was accompanied by a 2-4-fold augmentation of CC49 sFv localized to the HT-29 tumors, measured by direct quantitation of 125I-labeled CC49 sFv tumor deposition as well as tumor:normal tissue ratios. Enhanced CC49 sFv tumor localization improved HT-29 tumor visualization by external scintigraphy as well as when using a hand-held gamma-detecting probe to discriminate between normal (i.e., heart, hind leg) and tumor tissue. The gamma-detecting probe was the same as that used intraoperatively with 125I-labeled CC49 IgG to identify occult tumors in patients. The present experimental findings indicate that the efficiency by which 125I-labeled CC49 sFv localizes tumor in vivo can be enhanced with IFN-gamma. Results of the present study suggest that (a) the incorporation of an IFN-gamma treatment schema prior to radioimmunscintigraphy may increase the signal from the tumor site(s), thus providing a better discrimination between tumor and background, and (b) combining 125I-labeled CC49 sFv with IFN-gamma will not only reduce the time interval between antibody injection and surgery, but will also increase the efficiency of tumor localization using the intraoperative gamma-detecting probe.
- Subjects :
- Animals
Antigens, Neoplasm analysis
Antigens, Tumor-Associated, Carbohydrate analysis
Colonic Neoplasms diagnostic imaging
Gamma Rays
Glycoproteins analysis
Humans
Interferon-gamma pharmacology
Mice
Mice, Inbred BALB C
Mice, Nude
Neoplasm Transplantation
Radionuclide Imaging
Transplantation, Heterologous
Antibodies, Neoplasm
Immunoglobulin Fragments chemistry
Neoplasms, Experimental diagnostic imaging
Subjects
Details
- Language :
- English
- ISSN :
- 0008-5472
- Volume :
- 55
- Issue :
- 13
- Database :
- MEDLINE
- Journal :
- Cancer research
- Publication Type :
- Academic Journal
- Accession number :
- 7796413