Back to Search
Start Over
Regulation of endogenous dopamine release in amphibian retina by gamma-aminobutyric acid and glycine.
- Source :
-
Visual neuroscience [Vis Neurosci] 1994 Sep-Oct; Vol. 11 (5), pp. 1003-12. - Publication Year :
- 1994
-
Abstract
- Endogenous dopamine release in the retina of the African clawed frog (Xenopus laevis) increases in light and decreases in darkness. The roles of the inhibitory amino acid transmitters gamma-aminobutyric acid (GABA) and glycine in regulating this light/dark difference in dopamine release were explored in the present study. Exogenous GABA, the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, and the GABA-C receptor agonist cis-aminocrotonic acid (CACA) suppressed light-evoked dopamine overflow from eyecups. The effects of GABA-A and -B receptor agonists were selectively reversed by their respective receptor-specific antagonists, whereas the effect of CACA was reversed by the competitive GABA-A receptor antagonist bicuculline. The benzodiazepine diazepam enhanced the effect of muscimol on light-evoked dopamine release. Both GABA-A and -B receptor antagonists stimulated dopamine release in light or darkness. Bicuculline was more potent in light than in darkness. These data suggest that retinal dopaminergic neurons are inhibited by GABA-A and -B receptor activation in both light and darkness but that GABA-mediated inhibitory tone may be greater in darkness than in light. Exogenous glycine inhibited light-stimulated dopamine release in a concentration-dependent and strychnine-sensitive manner. However, strychnine alone did not increase dopamine release in light or darkness, nor did it augment bicuculline-stimulated release in darkness. Additionally, both strychnine and 7-chlorokynurenate, an antagonist of the strychnine-insensitive glycine-binding site of the N-methyl-D-aspartate subtype of glutamate receptor, suppressed light-evoked dopamine release. Thus, the role of endogenous glycine in the regulation of dopamine release remains unclear.
Details
- Language :
- English
- ISSN :
- 0952-5238
- Volume :
- 11
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Visual neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 7947393
- Full Text :
- https://doi.org/10.1017/s095252380000393x