Back to Search Start Over

The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells.

Authors :
Orlandi PA
Critchley DR
Fishman PH
Source :
Biochemistry [Biochemistry] 1994 Nov 01; Vol. 33 (43), pp. 12886-95.
Publication Year :
1994

Abstract

The E. coli type I heat-labile enterotoxin (LT-I) shares considerable functional, structural, and immunological homology with cholera toxin (CT). Although the ganglioside GM1 is the sole receptor for CT, LT-I also appears to utilize additional, unique receptors on intestinal cells not recognized by CT. We characterized this second class of LT-I receptors using the human intestinal epithelial cell line, CaCo-2. CaCo-2 cells bound 8-fold more LT-I than CT, and some of these additional LT-I receptors appeared to be functional, as CT-B only partially inhibited LT-I activity at concentrations that completely inhibited CT activity. Membranes from unlabeled or [3H]galactose-labeled cells were incubated with toxin B subunits and extracted with Triton X-100, and the solubilized toxin B-receptor complexes were immunoabsorbed with anti-B bound to protein A-Sepharose. When organic extracts of the complexes were separated by thin-layer chromatography and overlayed with [125I]toxin, both toxins were found to bind only GM1. Separation of the complexes from [3H]galactose-labeled membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a series of galactoproteins specifically recognized by LT-I but not by CT. Similar proteins were detected on Western blots probed with [125I]toxin. LT-I activity on intact cells and binding to membranes and the above galactoproteins were enhanced by neuraminidase treatment even in the presence of CT-B. beta-1,4-Galactosidase and endo-beta-1,4-galactosidase, but not beta-1,3-galactosidase, significantly reduced LT-I binding. LT-I binding to fetuin and transferrin exhibited a similar glycosidase sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

Details

Language :
English
ISSN :
0006-2960
Volume :
33
Issue :
43
Database :
MEDLINE
Journal :
Biochemistry
Publication Type :
Academic Journal
Accession number :
7947695
Full Text :
https://doi.org/10.1021/bi00209a021