Back to Search
Start Over
Breaking the integrin hinge. A defined structural constraint regulates integrin signaling.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 1996 Mar 22; Vol. 271 (12), pp. 6571-4. - Publication Year :
- 1996
-
Abstract
- Integrins are heterodimeric (alpha, beta) cell adhesion receptors. We demonstrate that point mutations in the cytoplasmic domains of both the alpha and beta subunits promote constitutive signaling by the integrin alphaIIbbeta3. By generating charge reversal mutations, we show these "activating" mutations may act by disrupting a potential salt bridge between the membrane-proximal portions of the alpha and beta subunit cytoplasmic domains. Thus, the modulation of specific interactions between the alpha and beta subunit cytoplasmic domains may regulate transmembrane signaling through integrins. In addition, these activating mutations induce dominant alterations in cellular behavior, such as the assembly of the extracellular matrix. Consequently, somatic mutations in integrin cytoplasmic domains could have profound effects in vivo on integrin-dependent functions such as matrix assembly, cell migration, and anchorage-dependent cell growth and survival.
- Subjects :
- Amino Acid Sequence
Animals
Cell Adhesion Molecules metabolism
Cricetinae
DNA, Complementary
Focal Adhesion Protein-Tyrosine Kinases
Integrins chemistry
Integrins genetics
Molecular Sequence Data
Mutagenesis, Site-Directed
Phosphorylation
Point Mutation
Protein Conformation
Protein-Tyrosine Kinases metabolism
Integrins metabolism
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 271
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 8636068
- Full Text :
- https://doi.org/10.1074/jbc.271.12.6571