Back to Search
Start Over
ACh dilates pial arterioles in endothelial and neuronal NOS knockout mice by NO-dependent mechanisms.
- Source :
-
The American journal of physiology [Am J Physiol] 1996 Sep; Vol. 271 (3 Pt 2), pp. H1145-50. - Publication Year :
- 1996
-
Abstract
- We used mice with deletions in either the endothelial nitric oxide synthase (eNOS) or neuronal NOS (nNOS) gene to investigate the role of eNOS and nNOS in acetylcholine (ACh)-induced relaxation of pial arterioles (20-30 microns). Pial arteriolar diameter was measured by intravital microscopy through a closed cranial window, and NOS activity was determined by the conversion of [3H]arginine to [3H]citrulline in subjacent cortex. ACh superfusion (1, 10 microM) caused atropine-sensitive dose-dependent arteriolar dilation in all three mouse strains. At 10 microM, increases of 20 +/- 2, 31 +/- 3, and 23 +/- 3% were recorded in wild-type (n = 25), nNOS mutant (n = 15), and eNOS mutant (n = 20) mice, respectively. NG-nitro-L-arginine (L-NNA, 1 mM) superfusion inhibited cortical NOS activity by > 70% and abrogated the response in wild-type mice while blocking the dilation by approximately 50% in eNOS mutant and nNOS mutant mice. Only in the eNOS mutant did tetrodotoxin (TTX) superfusion (1 microM) attenuate ACh-induced dilation (n = 6). The residual dilation after L-NNA in eNOS mutant mice could be blocked completely by TTX-plus L-NNA. Our findings indicate that 1) ACh dilates pial arterioles of wild-type mice by NOS-dependent mechanisms as reported in other species, 2) the response in nNOS mutant mice resembles the wild-type response except for enhanced dilation to ACh and reduced L-NNA sensitivity, and 3) surprisingly, the response in eNOS mutant mice is partially NOS dependent and attenuated by both TTX and L-NNA. Because nNOS is constitutively expressed in eNOS mutants, these findings coupled with the TTX results suggest that an nNOS-dependent mechanism may compensate for the chronic loss of eNOS activity after targeted gene disruption.
- Subjects :
- Acetylcholine antagonists & inhibitors
Animals
Arterioles drug effects
Arterioles enzymology
Arterioles innervation
Endothelium, Vascular enzymology
Enzyme Inhibitors pharmacology
Male
Mice
Mice, Inbred Strains
Neurons enzymology
Nitric Oxide Synthase metabolism
Nitroarginine pharmacology
Tetrodotoxin pharmacology
Acetylcholine pharmacology
Mice, Knockout genetics
Nitric Oxide physiology
Nitric Oxide Synthase genetics
Pia Mater blood supply
Vasodilation drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 0002-9513
- Volume :
- 271
- Issue :
- 3 Pt 2
- Database :
- MEDLINE
- Journal :
- The American journal of physiology
- Publication Type :
- Academic Journal
- Accession number :
- 8853353
- Full Text :
- https://doi.org/10.1152/ajpheart.1996.271.3.H1145