Back to Search Start Over

Isocitrate dehydrogenase and glyoxylate cycle enzyme activities in Bradyrhizobium japonicum under various growth conditions.

Authors :
Green LS
Karr DB
Emerich DW
Source :
Archives of microbiology [Arch Microbiol] 1998 May; Vol. 169 (5), pp. 445-51.
Publication Year :
1998

Abstract

Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165-170 nmol min-1 (mg protein)-1] were found in cells grown on acetate or beta-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50-80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent Km of isocitrate lyase for D,L-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 microM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the Vmax nor the D,L-isocitrate Km of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum.

Details

Language :
English
ISSN :
0302-8933
Volume :
169
Issue :
5
Database :
MEDLINE
Journal :
Archives of microbiology
Publication Type :
Academic Journal
Accession number :
9560426
Full Text :
https://doi.org/10.1007/s002030050595