Back to Search
Start Over
Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles.
- Source :
-
Circulation research [Circ Res] 1998 Jul 13; Vol. 83 (1), pp. 50-9. - Publication Year :
- 1998
-
Abstract
- A growing body of evidence has been accumulated recently suggesting that growth hormone (GH) and insulin-like growth factor-1 (IGF-1) affect cardiac function, but their mechanism(s) of action is unclear. In the present study, GH and IGF-1 were administered to isolated isovolumic aequorin-loaded rat whole hearts and ferret papillary muscles. Although GH had no effect on the indices of cardiac function, IGF-1 increased isovolumic developed pressure by 24% above baseline. The aequorin transients were abbreviated and demonstrated decreased amplitude. The positive inotropic effects of IGF-1 were not associated with increased intracellular Ca2+ availability to the contractile machinery but to a significant increase of myofilament Ca2+ sensitivity. Accordingly, the Ca2+-force relationship obtained under steady-state conditions in tetanized muscle was shifted significantly to the left (EC50, 0.44+/-0.02 versus 0.52+/-0.03 micromol/L with and without IGF-1 in the perfusate, respectively; P<0.05); maximal Ca2+-activated tetanic pressure was increased significantly by 12% (211+/-3 versus 235+/-2 mm Hg in controls and IGF-1-treated hearts, respectively; P<0.01). The positive inotropic actions of IGF-1 were not associated with changes in either pHi or high-energy phosphate content, as assessed by 31P nuclear magnetic resonance spectroscopy, and were blocked by the phosphatidylinositol 3-kinase inhibitor wortmannin. Concomitant administration of IGF binding protein-3 blocked IGF-1-positive inotropic action in ferret papillary muscles. In conclusion, IGF-1 is an endogenous peptide that through a wortmannin-sensitive pathway displays distinct positive inotropic properties by sensitizing the myofilaments to Ca2+ without increasing myocyte [Ca2+]i.
- Subjects :
- Animals
Electrophysiology
Ferrets
Heart drug effects
Heart physiology
In Vitro Techniques
Insulin-Like Growth Factor Binding Protein 3 pharmacology
Magnetic Resonance Spectroscopy
Male
Papillary Muscles drug effects
Papillary Muscles physiology
Rats
Rats, Sprague-Dawley
Wortmannin
Actin Cytoskeleton physiology
Androstadienes pharmacology
Calcium physiology
Enzyme Inhibitors pharmacology
Human Growth Hormone pharmacology
Insulin-Like Growth Factor I pharmacology
Myocardial Contraction drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 0009-7330
- Volume :
- 83
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Circulation research
- Publication Type :
- Academic Journal
- Accession number :
- 9670918
- Full Text :
- https://doi.org/10.1161/01.res.83.1.50