Back to Search
Start Over
In vivo efficacy of ABT-255 against drug-sensitive and -resistant Mycobacterium tuberculosis strains.
- Source :
-
Antimicrobial agents and chemotherapy [Antimicrob Agents Chemother] 1998 Oct; Vol. 42 (10), pp. 2674-7. - Publication Year :
- 1998
-
Abstract
- Current therapy for pulmonary tuberculosis involves 6 months of treatment with isoniazid, pyrazinamide, rifampin, and ethambutol or streptomycin for reliable treatment efficacy. The long treatment period increases the probability of noncompliance, leading to the generation of multidrug-resistant isolates of Mycobacterium tuberculosis. A treatment option that significantly shortened the course of therapy, or a new class of antibacterial effective against drug-resistant M. tuberculosis would be of value. ABT-255 is a novel 2-pyridone antibacterial agent which demonstrates in vitro potency and in vivo efficacy against drug-susceptible and drug-resistant M. tuberculosis strains. By the Alamar blue reduction technique, the MIC of ABT-255 against susceptible strains of M. tuberculosis ranged from 0.016 to 0.031 microg/ml. The MIC of ABT-255 against rifampin- or ethambutol-resistant M. tuberculosis isolates was 0.031 microg/ml. In a murine model of pulmonary tuberculosis, 4 weeks of oral ABT-255 therapy produced a 2- to 5-log10 reduction in viable drug-susceptible M. tuberculosis counts from lung tissue. Against drug-resistant strains of M. tuberculosis, ABT-255 produced a 2- to 3-log10 reduction in viable bacterial counts from lung tissue. ABT-255 is a promising new antibacterial agent with activity against M. tuberculosis.
Details
- Language :
- English
- ISSN :
- 0066-4804
- Volume :
- 42
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Antimicrobial agents and chemotherapy
- Publication Type :
- Academic Journal
- Accession number :
- 9756775
- Full Text :
- https://doi.org/10.1128/AAC.42.10.2674