Back to Search Start Over

Effect of acute, short- and long-term milnacipran administration on rat locus coeruleus noradrenergic and dorsal raphe serotonergic neurons.

Authors :
Mongeau R
Weiss M
de Montigny C
Blier P
Source :
Neuropharmacology [Neuropharmacology] 1998 Jul; Vol. 37 (7), pp. 905-18.
Publication Year :
1998

Abstract

The effect of milnacipran on the firing activity of dorsal raphe serotonin (5-HT) neurons and locus coeruleus norepineprine (NE) neurons was assessed using extracellular unitary recording in chloral hydrate anesthetized rats. A 2-day treatment with milnacipran (20 or 60 mg/kg/day, s.c.) markedly decreased the firing rate of NE neurons, and it remained reduced after a 7- or a 14-day treatment. Although the suppressant effect of the alpha2-adrenergic agonist clonidine on the firing rate of NE neurons was markedly reduced following long-term milnacipran (60 mg/kg/day x 14 days, s.c.), that of NE remained unchanged. The firing rate of 5-HT neurons was reduced following a 2-day treatment with milnacipran (20 mg/kg/day, s.c.), but there was a partial recovery after a 7-day treatment (20 mg/kg/day, s.c.) and a complete one after a 14-day treatment (20, 40 or 60 mg/kg/day, s.c.). The suppressant effect of 5-HT and of the 5-HT1A agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin) on the firing rate of 5-HT neurons was also unaltered after milnacipran (60 mg/kg/day x 14 days, s.c.). The latter milnacipran treatment did not affect the uptake of [3H]5-HT but it inhibited that of [3H]NE by 30% in hippocampal slices. The NE system was thus investigated in an attempt to explain the effects of milnacipran on the firing activity of 5-HT neurons. Acute injection of milnacipran suppressed the firing activity of 5-HT neurons (with an ED50 of 5.7+/-1.5 mg/kg, i.v.), but not in NE-denervated rats. Furthermore, the inhibitory effect of clonidine on 5-HT neuron firing activity was markedly reduced by the long-term milnacipran treatment, whereas the inhibition of electrically evoked release of [3H]NE as well as that of [3H]5-HT produced by the alpha2-adrenoceptor agonist UK 14.304 from preloaded mesencephalic slices containing the dorsal raphe was unaltered. The latter results indicate that the alpha2-adrenergic autoreceptor and heteroreceptor were unaffected in the raphe area by milnacipran. In conclusion, milnacipran had profound effects on the function of 5-HT and NE neurons, and the mechanism by which 5-HT neurons regained their normal firing during milnacipran treatment appeared to implicate the NE system.

Details

Language :
English
ISSN :
0028-3908
Volume :
37
Issue :
7
Database :
MEDLINE
Journal :
Neuropharmacology
Publication Type :
Academic Journal
Accession number :
9776386
Full Text :
https://doi.org/10.1016/s0028-3908(98)00083-5