Back to Search
Start Over
Trimethadione metabolism and microsomal monooxygenases in untreated and phenobarbital-treated rhesus monkeys.
- Source :
-
Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology [Comp Biochem Physiol C Pharmacol Toxicol Endocrinol] 1998 Aug; Vol. 120 (2), pp. 317-20. - Publication Year :
- 1998
-
Abstract
- The contribution of induced cytochrome P450 (P450) isozymes (CMLa; CYP2B, CMLb; CYP2A and CMLc; CYP3A) and related enzymes to trimethadione (TMO) metabolism in phenobarbital-treated rhesus monkey were investigated. The animals received a single dose of TMO (4 mg kg-1) and plasma samples were withdrawn before this administration and again at 0.08, 0.25, 0.5, 1 and 2 h later. Phenobarbital-treatment (20 mg kg-1 day-1 for 3 days; i.p.) significantly increased the plasma dimethadione (DMO)/TMO ratios at 0.08, 0.5, 1 and 2 h one's appropriate controls. Phenobarbital treatment also increased the P450 content (1.7-fold) and activity of aniline p-hydroxylase (1.3-fold), p-nitroanisole O-demethylase (1.8-fold) and benzphetamine N-demethylase (2.3-fold). The content of CMLa, CMLb and CMLc were increased about 12.8, 2.3 and 2.7-fold by phenobarbital pretreatment, respectively. The activity of TMO N-demethylation was inhibited by anti-P450 CMLa and anti-P450 CMLb. However, the anti-P450 CMLc antibody had no effect on this activity in liver microsomes. The results of both in vivo and in vitro studies of the effects of phenobarbital treatment on TMO metabolism indicate that these effects may be attributed to the induction of CMLa. These findings suggest that plasma DMO/TMO ratio in a single blood sampling after TMO administration is very useful for determination the degree of hepatic induction in clinical study.
- Subjects :
- Aniline Hydroxylase biosynthesis
Animals
Anticonvulsants blood
Anticonvulsants pharmacology
Cytochrome P-450 Enzyme System analysis
Dimethadione blood
Enzyme Induction drug effects
Isoenzymes analysis
Macaca mulatta
Male
Microsomes, Liver enzymology
Oxidoreductases, N-Demethylating biosynthesis
Oxidoreductases, O-Demethylating biosynthesis
Phenobarbital
Trimethadione blood
Trimethadione pharmacology
Anticonvulsants metabolism
Cytochrome P-450 Enzyme System biosynthesis
Isoenzymes biosynthesis
Microsomes, Liver drug effects
Trimethadione metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1367-8280
- Volume :
- 120
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology
- Publication Type :
- Academic Journal
- Accession number :
- 9827046
- Full Text :
- https://doi.org/10.1016/s0742-8413(98)10065-8