Back to Search Start Over

Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.

Authors :
Ichihara A
Imig JD
Navar LG
Source :
Hypertension (Dallas, Tex. : 1979) [Hypertension] 1999 Jan; Vol. 33 (1 Pt 2), pp. 462-6.
Publication Year :
1999

Abstract

This study was designed to determine the influence of neuronal nitric oxide synthase (nNOS) in tubular flow-dependent regulation of afferent arteriolar diameter in hypertensive Sprague-Dawley rats that received 60 ng/min angiotensin II (Ang II) subcutaneously for 13 days. Systolic blood pressure of control and Ang II-infused rats averaged 122+/-2 (n=23) and 194+/-2 mm Hg (n=24). Afferent arteriolar responses to the nNOS inhibitor S-methyl-L-thiocitrulline (L-SMTC; 0.1 to 10 micromol/L) and the nonselective NOS inhibitor Nomega-nitro-L-arginine (L-NNA; 1 to 100 micromol/L) were assessed in vitro using the blood-perfused juxtamedullary nephron preparation. At a perfusion pressure of 160 mm Hg, afferent arteriolar diameters from control and Ang II-infused rats averaged 18.7+/-1.1 microm (n=8) and 18.1+/-1.1 microm (n=9), respectively, and decreased by 19. 9+/-1.5% and 11.8+/-1.1%, respectively, in response to 10 micromol/L L-SMTC. The L-SMTC-induced afferent arteriolar constriction was significantly greater in control than in Ang II-infused rats. In contrast, 100 micromol/L L-NNA constricted afferent arterioles similarly in both control (n=8) and Ang II-infused (n=7) rats. After transection of the loops of Henle to interrupt flow to the macula densa, the vasoconstrictor responses to L-SMTC but not to L-NNA were reversed. Increasing distal volume delivery by addition of 10 mmol/L acetazolamide to the blood perfusate significantly enhanced the afferent arteriolar constrictor responses to 10 micromol/L L-SMTC (34.5+/-4.8%, n=7) in normotensive rats. In contrast, in Ang II-infused rats, acetazolamide treatment did not enhance the responses to L-SMTC (n=8). These results indicate that chronic Ang II infusion reduces the ability of nNOS-derived nitric oxide to counteract the afferent arteriolar response to increased distal tubular flow.

Details

Language :
English
ISSN :
0194-911X
Volume :
33
Issue :
1 Pt 2
Database :
MEDLINE
Journal :
Hypertension (Dallas, Tex. : 1979)
Publication Type :
Academic Journal
Accession number :
9931148
Full Text :
https://doi.org/10.1161/01.hyp.33.1.462