Back to Search
Start Over
Integrated Study of Rare Earth Drawdown by Electrolysis for Molten Salt Recycle
- Publication Year :
- 2017
-
Abstract
- Pyroprocessing is an electrochemical method that is capable of separating uranium (U) and minor actinides from LiCl-KCl eutectic salt where used nuclear fuel (UNF) is dissolved. During the process, fission products including rare earth metals (RE) continually accumulate in the salt and eventually affecting uranium recovery efficiency. To reduce the salt waste after uranium and minor actinides recovery, electrolysis is performed to drawdown rare earth materials from molten salt to restore salt initial state. Present research focus on the development of RE fundamental physical properties in LiCl-KCl eutectic salt. These properties includes apparent potential, activity coefficient, diffusion coefficient and exchange current density. Additional properties including charge transfer coefficient and reaction rate constant are calculated during the analysis. La, Nd and Gd are three RE that we are particularly interested in due to the high ratio of these elements in UNF (La, Nd), the well-studied properties in dilute solution to provide a base for comparison, and the highest standard potential among all RE (Gd). Fundamental properties of La, Nd, Gd in LiCl-KCl eutectic salt are studied at a temperature ranging from 723 K to 823 K and RE concentration ranging from 1 wt% to 9 wt%. These properties are studied by electroanalytical methods including Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Tafel method, Chronocoulummetry (CC) and Chronopoentiometry (CP). BET model that considers the RE adsorption on the electrode is developed for diffusion coefficient analysis. Electrode kinetic model is developed to account for mass transfer effect during the analysis of exchange current density. Correlations of diffusion coefficient, apparent potential, exchange current density with temperature and concentration are developed. These fundamental data are integrated with a electrolysis model to predict the electrolysis process for RE drawdown from LiCl-KCl salt. The model considers both the diffusion in electrolyte and Faraday process on the electrode surface and a surface layer is introduced to account for the fact that diffusion current is not necessarily equal to the current due to the Butler-Volmer equation. The model is validated by chronoamperometry and chronopotentiometry.
Details
- Language :
- English
- Database :
- OpenDissertations
- Publication Type :
- Dissertation/ Thesis
- Accession number :
- ddu.oai.etd.ohiolink.edu.osu1503267714820028