Back to Search Start Over

Polymorphisms in genes in the RANKL/RANK/OPG pathway are associated with bone mineral density at different skeletal sites in post-menopausal women.

Authors :
Tu, P.
Duan, P.
Zhang, R.-S.
Xu, D.-B.
Wang, Y.
Wu, H.-P.
Liu, Y.-H.
Si, L.
Source :
Osteoporosis International; Jan2015, Vol. 26 Issue 1, p179-185, 7p
Publication Year :
2015

Abstract

Summary: Association between 22 single nucleotide polymorphisms (SNPs) in the TNFSF11, TNFRSF11A, and TNFRSF11B genes in the RANKL/RANK/OPG pathway with bone mineral density (BMD) in 881 post-menopausal women. Our results suggest that TNFSF11 and TNFRSF11A, but not TNFRSF11B, genetic polymorphisms influence BMD mainly in the femoral neck in post-menopausal Chinese women. Introduction: The aim of this study was to assess the relationship of polymorphisms in the TNFSF11, TNFRSF11A, and TNFRSF11B genes in the RANKL/RANK/OPG pathway with bone mineral density (BMD) in a cohort of Chinese post-menopausal women. Methods: A cross-sectional study was conducted in 881 post-menopausal women aged 50-89 years. All participants underwent lumbar spinal (LS) and femoral neck (FN) BMD evaluation by dual-energy X-ray absorptiometry. Twenty-two TNFSF11, TNFRSF11A, and TNFRSF11B SNPs were genotyped. We tested whether a single SNP or a haplotype was associated with BMD variations. Results: Two SNPs in the TNFSF11 gene (rs2277439 and rs2324851) and one in the TNFRSF11A gene (rs7239261) were found to be significantly associated with FN BMD ( p = 0.014, 0.013, and 0.047, respectively). Haplotype TGACGT of TNFSF11 rs9525641-rs2277439-rs2324851-rs2875459-rs2200287-rs9533166 was a genetic risk factor toward a lower FN BMD (beta = −0.1473; p = 0.01126). In contrary, haplotype TAGCGT of TNFSF11 rs9525641-rs2277439-rs2324851-rs2875459-rs2200287-rs9533166 was genetic protective factor for LS BMD (beta = 0.3923; p = 0.04917). Conclusions: Our findings suggest that TNFSF11 and TNFRSF11A, but not TNFRSF11B, genetic polymorphisms influence BMD mainly in the femoral neck in post-menopausal Chinese women. This contributes to the understanding of the role of genetic variation in this pathway in determining bone health. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0937941X
Volume :
26
Issue :
1
Database :
Complementary Index
Journal :
Osteoporosis International
Publication Type :
Academic Journal
Accession number :
100302679
Full Text :
https://doi.org/10.1007/s00198-014-2854-7