Back to Search Start Over

Water adsorption in metal-organic frameworks with open-metal sites.

Authors :
Peng, Xuan
Lin, Li‐Chiang
Sun, Weizhen
Smit, Berend
Source :
AIChE Journal; Feb2015, Vol. 61 Issue 2, p677-687, 11p
Publication Year :
2015

Abstract

H<subscript>2</subscript>O adsorptions inside porous materials, including silica zeolites, zeolite imidazolate frameworks, and metal-organic frameworks (MOFs) using molecular simulations with different water models are investigated. Due to the existence of coordinately unsaturated metal sites, the predicted adsorption properties in M-MOF-74 (M = Mg, Ni, Co, Zn) and Cu-BTC are found to be greatly sensitive to the adopted H<subscript>2</subscript>O models. Surprisingly, the analysis of the orientations of H<subscript>2</subscript>O minimum energy configuration in these materials show that three-site H<subscript>2</subscript>O models predict an unusual perpendicular angle of H<subscript>2</subscript>O plane with respect to the Metal-O<subscript>4</subscript> plane, whereas those models with more than three sites give a more parallel angle that is in better agreement with the one obtained from density functional theory (DFT) calculations. In addition, the use of these commonly used models estimates the binding energies with the values lower than the ones computed by DFT ranging from 15 to 40%. To correct adsorption energies, simple approach to adjust metal-O(H<subscript>2</subscript>O) sigma parameters to reproduce the DFT-calculated binding energies is used. With the refined parameters, the computed water isotherms inside Mg-MOF-74 and Cu-BTC are in reasonable agreement with experimental data, and provide significant improvement compared to the predictions made by the original models. Further, a detailed inspection on the water configurations at higher-pressure region was also made, and observed that there is an interesting two-layer water network formed using three- and four-site models. © 2014 American Institute of Chemical Engineers AIChE J, 61: 677-687, 2015 [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00011541
Volume :
61
Issue :
2
Database :
Complementary Index
Journal :
AIChE Journal
Publication Type :
Academic Journal
Accession number :
100437860
Full Text :
https://doi.org/10.1002/aic.14707