Back to Search
Start Over
Application of vibrational correlation formalism to internal conversion rate: Case study of Cun (n = 3, 6, and 9) and H2/Cu3.
- Source :
- Journal of Chemical Physics; 2015, Vol. 142 Issue 11, p1-12, 12p, 1 Color Photograph, 1 Diagram, 5 Charts, 6 Graphs
- Publication Year :
- 2015
-
Abstract
- This work reports non-radiative internal conversion (IC) rate constants obtained for Cu<subscript>n</subscript> with n = 3, 6, and 9 and H<subscript>2</subscript> on Cu<subscript>3</subscript>. The Time-Dependent Density Functional Theory (TDDFT) method was employed with three different functionals in order to investigate the electronic structures and the absorption spectra. The performance of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE) and the hybrid B3LYP and PBE0 exchange correlation functionals in combination with the SVP and the def2-TZVP basis sets was examined. TDDFT results were used as input data to compute internal conversion rate constants. For this purpose, we have developed a program package. A description of the theoretical background used in our numerical implementation and the program input file is presented. In view of future applications of this program package in photoinduced catalysis, we present the analysis of the IC rate processes for the photodissociation of H<subscript>2</subscript> on Cu<subscript>3</subscript>. These results showed the applicability of the method and the computational program to identify the vibrational modes in transition metal clusters giving rise to the largest IC rate constant due to their interactions with the excited electronic states occurring in the hot-electron induced dissociation phenomena. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 142
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 101718120
- Full Text :
- https://doi.org/10.1063/1.4915127