Back to Search Start Over

Completing the Valdivia-Vogt tables of sequence-space representations of spaces of smooth functions and distributions.

Authors :
Bargetz, Christian
Source :
Monatshefte für Mathematik; May2015, Vol. 177 Issue 1, p1-14, 14p
Publication Year :
2015

Abstract

In the Valdivia-Vogt structure tables presented in Ortner and Wagner (J Math Anal Appl 404(1):1-10, ) there are two gaps. We fill in these gaps by proving the representations $$\mathcal {D}^{F}\cong s\widehat{\otimes }_{\pi }\mathbb {C}^{(\mathbb {N})}$$ and $$\dot{\mathcal {B}}' \cong s'\widehat{\otimes } c_{0}$$ , where $$\mathcal {D}^{F}$$ is a pre-dual space of the space of distributions of finite order introduced by J. Horváth and the space $$\dot{\mathcal {B}}'$$ is the space of distributions vanishing at infinity introduced by L. Schwartz. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00269255
Volume :
177
Issue :
1
Database :
Complementary Index
Journal :
Monatshefte für Mathematik
Publication Type :
Academic Journal
Accession number :
102104962
Full Text :
https://doi.org/10.1007/s00605-014-0650-2