Back to Search
Start Over
Completing the Valdivia-Vogt tables of sequence-space representations of spaces of smooth functions and distributions.
- Source :
- Monatshefte für Mathematik; May2015, Vol. 177 Issue 1, p1-14, 14p
- Publication Year :
- 2015
-
Abstract
- In the Valdivia-Vogt structure tables presented in Ortner and Wagner (J Math Anal Appl 404(1):1-10, ) there are two gaps. We fill in these gaps by proving the representations $$\mathcal {D}^{F}\cong s\widehat{\otimes }_{\pi }\mathbb {C}^{(\mathbb {N})}$$ and $$\dot{\mathcal {B}}' \cong s'\widehat{\otimes } c_{0}$$ , where $$\mathcal {D}^{F}$$ is a pre-dual space of the space of distributions of finite order introduced by J. Horváth and the space $$\dot{\mathcal {B}}'$$ is the space of distributions vanishing at infinity introduced by L. Schwartz. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00269255
- Volume :
- 177
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Monatshefte für Mathematik
- Publication Type :
- Academic Journal
- Accession number :
- 102104962
- Full Text :
- https://doi.org/10.1007/s00605-014-0650-2