Back to Search Start Over

THE USE OF FINITE DIFFERENCE/ELEMENT APPROACHES FOR SOLVING THE TIME-FRACTIONAL SUBDIFFUSION EQUATION.

Authors :
FANHAI ZENG
CHANGPIN LI
FAWANG LIU
IAN TURNER
Source :
SIAM Journal on Scientific Computing; 2013, Vol. 35 Issue 6, pA2976-A3000, 25p
Publication Year :
2013

Abstract

In this paper, two finite difference/element approaches for the time-fractional subdiffusion equation with Dirichlet boundary conditions are developed, in which the time direction is approximated by the fractional linear multistep method and the space direction is approximated by the finite element method. The two methods are unconditionally stable and convergent of order O(τ<superscript>q</superscript> +h<superscript>r+1</superscript>) in the L² norm, where q = 2-β or 2 when the analytical solution to the subdiffusion equation is sufficiently smooth, β (0 < β < 1) is the order of the fractional derivative, τ and h are the step sizes in time and space, respectively, and r is the degree of the polynomial space. The corresponding schemes for the subdiffusion equation with Neumann boundary conditions are presented as well, where the stability and convergence are shown. Numerical examples are provided to verify the theoretical analysis. Comparisons between the algorithms derived in this paper and the existing algorithms are given, which show that our numerical schemes exhibit better performances than the existing ones. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10648275
Volume :
35
Issue :
6
Database :
Complementary Index
Journal :
SIAM Journal on Scientific Computing
Publication Type :
Academic Journal
Accession number :
108627495
Full Text :
https://doi.org/10.1137/130910865