Back to Search Start Over

The Environment of Warm-Season Elevated Thunderstorms Associated with Heavy Rainfall over the Central United States.

Authors :
Moore, James T.
Glass, Fred H.
Graves, Charles E.
Rochette, Scott M.
Singer, Marc J.
Source :
Weather & Forecasting; Oct2003, Vol. 18 Issue 5, p861, 18p
Publication Year :
2003

Abstract

Twenty-one warm-season heavy-rainfall events in the central United States produced by mesoscale convective systems (MCSs) that developed above and north of a surface boundary are examined to define the environmental conditions and physical processes associated with these phenomena. Storm-relative composites of numerous kinematic and thermodynamic fields are computed by centering on the heavy-rain-producing region of the parent elevated MCS. Results reveal that the heavy-rain region of elevated MCSs is located on average about 160 km north of a quasi-stationary frontal zone, in a region of low-level moisture convergence that is elongated westward on the cool side of the boundary. The MCS is located within the left-exit region of a south-southwesterly low-level jet (LLJ) and the right-entrance region of an upper-level jet positioned well north of the MCS site. The LLJ is directed toward a divergence maximum at 250 hPa that is coincident with the MCS site. Near-surface winds are light and from the southeast within a boundary layer that is statically stable and cool. Winds veer considerably with height (about 140°) from 850 to 250 hPa, a layer associated with warm-air advection. The MCS is located in a maximum of positive equivalent potential temperature θ[sub e] advection, moisture convergence, and positive thermal advection at 850 hPa. Composite fields at 500 hPa show that the MCS forms in a region of weak anticyclonic curvature in the height field with marginal positive vorticity advection. Even though surface-based stability fields indicate stable low-level air, there is a layer of convectively unstable air with maximum-θ[sub e] CAPE values of more than 1000 J kg[sup -1] in the vicinity of the MCS site and higher values upstream. Maximum-θ[sub e] convective inhibition (CIN) values over the MCS centroid site are small (less than 40 J kg[sup -1] ) while to the south convection is limited by large values of CIN (greater than 60 J kg[sup -1] ). Surface-to-500-hPa composite average relative humidity values are about 70%, and composite precipitable water values average about 3.18 cm (1.25 in.). The representativeness of the composite analysis is also examined. Last, a schematic conceptual model based upon the composite fields is presented that depicts the typical environment favorable for the development of elevated thunderstorms that lead to heavy rainfall. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
RAINFALL
THUNDERSTORMS

Details

Language :
English
ISSN :
08828156
Volume :
18
Issue :
5
Database :
Complementary Index
Journal :
Weather & Forecasting
Publication Type :
Academic Journal
Accession number :
10911819
Full Text :
https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2