Back to Search
Start Over
Knowledge Engineering with Big Data.
- Source :
- IEEE Intelligent Systems; Sep2015, Vol. 30 Issue 5, p46-55, 10p
- Publication Year :
- 2015
-
Abstract
- In the era of big data, knowledge engineering faces fundamental challenges induced by fragmented knowledge from heterogeneous, autonomous sources with complex and evolving relationships. The knowledge representation, acquisition, and inference techniques developed in the 1970s and 1980s, driven by research and development of expert systems, must be updated to cope with both fragmented knowledge from multiple sources in the big data revolution and in-depth knowledge from domain experts. This article presents BigKE, a knowledge engineering framework that handles fragmented knowledge modeling and online learning from multiple information sources, nonlinear fusion on fragmented knowledge, and automated demand-driven knowledge navigation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15411672
- Volume :
- 30
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- IEEE Intelligent Systems
- Publication Type :
- Academic Journal
- Accession number :
- 109349146
- Full Text :
- https://doi.org/10.1109/MIS.2015.56