Back to Search
Start Over
On the parity of the prime-counting function and related problems.
- Source :
- Ramanujan Journal; Oct2015, Vol. 38 Issue 1, p179-187, 9p
- Publication Year :
- 2015
-
Abstract
- We study the parity of the prime-counting function $$\pi (x)$$ , and more generally the distribution of its values in residue classes modulo $$q$$ . We prove that for any integer $$q\ge 2$$ and $$0\le a\le q-1$$ , the function $$\pi (n)$$ lies in the residue class $$a \pmod q$$ for a positive proportion of integers $$n\ge 1$$ . Based on the numerical evidence, we conjecture that $$\pi (n)$$ should be equidistributed among the residue classes modulo $$q$$ , and we prove an average version of this conjecture using the large sieve. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13824090
- Volume :
- 38
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Ramanujan Journal
- Publication Type :
- Academic Journal
- Accession number :
- 109442495
- Full Text :
- https://doi.org/10.1007/s11139-014-9596-1