Back to Search Start Over

Social Recommendation with Cross-Domain Transferable Knowledge.

Authors :
Jiang, Meng
Cui, Peng
Chen, Xumin
Wang, Fei
Zhu, Wenwu
Yang, Shiqiang
Source :
IEEE Transactions on Knowledge & Data Engineering; Nov2015, Vol. 27 Issue 11, p3084-3097, 14p
Publication Year :
2015

Abstract

Recommender systems can suffer from data sparsity and cold start issues. However, social networks, which enable users to build relationships and create different types of items, present an unprecedented opportunity to alleviate these issues. In this paper, we represent a social network as a star-structured hybrid graph centered on a social domain, which connects with other item domains. With this innovative representation, useful knowledge from an auxiliary domain can be transferred through the social domain to a target domain. Various factors of item transferability, including popularity and behavioral consistency, are determined. We propose a novel Hybrid Random Walk (HRW) method, which incorporates such factors, to select transferable items in auxiliary domains, bridge cross-domain knowledge with the social domain, and accurately predict user-item links in a target domain. Extensive experiments on a real social dataset demonstrate that HRW significantly outperforms existing approaches. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
10414347
Volume :
27
Issue :
11
Database :
Complementary Index
Journal :
IEEE Transactions on Knowledge & Data Engineering
Publication Type :
Academic Journal
Accession number :
110255955
Full Text :
https://doi.org/10.1109/TKDE.2015.2432811