Back to Search
Start Over
Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides.
Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides.
- Source :
- Journal of Chemical Physics; 2015, Vol. 143 Issue 13, p1-9, 9p, 1 Chart, 4 Graphs
- Publication Year :
- 2015
-
Abstract
- We investigate the behavior of oxygen vacancies in three different metal-oxide semiconductors (rutile and anatase TiO<subscript>2</subscript>, monoclinic WO<subscript>3</subscript>, and tetragonal ZrO<subscript>2</subscript>) using a recently proposed hybrid density-functional method in which the fraction of exact exchange is material-dependent but obtained ab initio in a self-consistent scheme. In particular, we calculate charge-transition levels relative to the oxygen-vacancy defect and compare computed optical and thermal excitation/emission energies with the available experimental results, shedding light on the underlying excitation mechanisms and related materials properties. We find that this novel approach is able to reproduce not only ground-state properties and band structures of perfect bulk oxide materials but also provides results consistent with the optical and electrical behavior observed in the corresponding substoichiometric defective systems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 143
- Issue :
- 13
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 110259695
- Full Text :
- https://doi.org/10.1063/1.4931805