Back to Search Start Over

Synthetic biology devices for in vitro and in vivo diagnostics.

Authors :
Slomovic, Shimyn
Pardee, Keith
Collins, James J.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 11/24/2015, Vol. 112 Issue 47, p14429-14435, 7p
Publication Year :
2015

Abstract

There is a growing need to enhance our capabilities in medical and environmental diagnostics. Synthetic biologists have begun to focus their biomolecular engineering approaches toward this goal, offering promising results that could lead to the development of new classes of inexpensive, rapidly deployable diagnostics. Many conventional diagnostics rely on antibody-based platforms that, although exquisitely sensitive, are slow and costly to generate and cannot readily confront rapidly emerging pathogens or be applied to orphan diseases. Synthetic biology, with its rational and short design-to-production cycles, has the potential to overcome many of these limitations. Synthetic biology devices, such as engineered gene circuits, bring new capabilities to molecular diagnostics, expanding the molecular detection palette, creating dynamic sensors, and untethering reactions from laboratory equipment. The field is also beginning to move toward in vivo diagnostics, which could provide near real-time surveillance of multiple pathological conditions. Here, we describe current efforts in synthetic biology, focusing on the translation of promising technologies into pragmatic diagnostic tools and platforms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
112
Issue :
47
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
111199916
Full Text :
https://doi.org/10.1073/pnas.1508521112