Back to Search Start Over

Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances.

Authors :
Gao, Zhiwei
Liu, Xiaoxu
Chen, Michael Z. Q.
Source :
IEEE Transactions on Industrial Electronics; Apr2016, Vol. 63 Issue 4, p2537-2547, 11p
Publication Year :
2016

Abstract

Robust fault estimation plays an important role in real-time monitoring, diagnosis, and fault-tolerance control. Accordingly, this paper aims to develop an effective fault estimation technique to simultaneously estimate the system states and the concerned faults, while minimizing the influences from process/sensor disturbances. Specifically, an augmented system is constructed by forming an augmented state vector composed of the system states and the concerned faults. Next, an unknown input observer (UIO) is designed for the augmented system by decoupling the partial disturbances and attenuating the disturbances that cannot be decoupled, leading to a simultaneous estimate of the system states and the concerned faults. In order to be close to the practical engineering situations, the process disturbances in this study are assumed not to be completely decoupled. In the first part of this paper, the existence condition of such an UIO is proposed to facilitate the fault estimation for linear systems subjected to process disturbances. In the second part, robust fault estimation techniques are addressed for Lipschitz nonlinear systems subjected to both process and sensor disturbances. The proposed technique is finally illustrated by the simulation studies of a three-shaft gas turbine engine and a single-link flexible joint robot. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02780046
Volume :
63
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Industrial Electronics
Publication Type :
Academic Journal
Accession number :
113814319
Full Text :
https://doi.org/10.1109/TIE.2015.2497201