Back to Search Start Over

Optimal ROS Signaling Is Critical for Nuclear Reprogramming.

Authors :
Zhou, Gang
Meng, Shu
Li, Yanhui
Ghebre, Yohannes T.
Cooke, John P.
Source :
Cell Reports; May2016, Vol. 15 Issue 5, p919-925, 7p
Publication Year :
2016

Abstract

Summary Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22 phox —a critical subunit of the Nox (1–4) complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26391856
Volume :
15
Issue :
5
Database :
Complementary Index
Journal :
Cell Reports
Publication Type :
Academic Journal
Accession number :
115024087
Full Text :
https://doi.org/10.1016/j.celrep.2016.03.084