Back to Search Start Over

Up-Regulation of CREG Expression by the Transcription Factor GATA1 Inhibits High Glucose- and High Palmitate-Induced Apoptosis in Human Umbilical Vein Endothelial Cells.

Authors :
Liu, Yanxia
Tian, Xiaoxiang
Li, Yang
Liu, Dan
Liu, Meili
Zhang, Xiaolin
Zhang, Quanyu
Yan, Chenghui
Han, Yaling
Source :
PLoS ONE; 5/3/2016, Vol. 11 Issue 5, p1-17, 17p
Publication Year :
2016

Abstract

Background: Endothelial cell (EC) apoptosis plays a vital role in the pathogenesis of atherosclerosis in patients with diabetes mellitus (DM), but the underlying mechanism remains unclear. Cellular repressor of E1A-stimulated genes (CREG) is a novel gene reported to be involved in maintaining the homeostasis of ECs. Therefore, in the present study, we investigated the role of CREG in high glucose/high palmitate-induced EC apoptosis and to decipher the upstream regulatory mechanism underlying the transcriptional regulation of CREG. Methods: The expression of CREG and the rate of apoptosis were assessed in lower-limb atherosclerotic lesions from patients with type 2 DM (T2DM). Primary human umbilical vein endothelial cells (HUVECs) were isolated and cultured in a high glucose/high palmitate medium (25 mmol/L D-glucose, 0.4 mmol/L palmitate), and the over-expression and knock-down of CREG were performed in HUVECs to determine the role of CREG in EC apoptosis. The upstream regulatory mechanism of CREG was identified using a promoter-binding transcription-factor profiling array, chromatin immunoprecipitation (ChIP) assay and a mutation analysis. Results: Compared with normal arteries from non-diabetic patients, reduced CREG expression and increased apoptosis were found in the endothelium of atherosclerotic lesions from patients with T2DM. In vitro treatment of HUVECs with a high glucose/high palmitate medium also resulted in decreased CREG expression and increased apoptosis. Moreover, high glucose/high palmitate induced-HUVEC apoptosis was increased by the knock-down of CREG and rescued by the over-expression of CREG. We also demonstrated that GATA1 was able to bind to the promoter of the human CREG gene. A deletion mutation at -297/-292 in the CREG promoter disrupted GATA1 binding and reduced the activation of CREG transcription by approximately 83.3%. Finally, the overexpression of GATA1 abrogated the high glucose/high palmitate-induced apoptosis in HUVECs. Conclusions: The over-expression of CREG inhibits high glucose/high palmitate-induced apoptosis in HUVECs. CREG is transcriptionally upregulated by GATA1. Thus, CREG might be a potential therapeutic target for intervention of vascular complications related to diabetes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
115088643
Full Text :
https://doi.org/10.1371/journal.pone.0154861