Back to Search Start Over

Normalization for Relative Quantification of mRNA and microRNA in Soybean Exposed to Various Abiotic Stresses.

Authors :
Liu, Weican
Deng, Yu
Zhou, Yonggang
Chen, Huan
Dong, Yuanyuan
Wang, Nan
Li, Xiaowei
Jameel, Aysha
Yang, He
Zhang, Min
Chen, Kai
Wang, Fawei
Li, Haiyan
Source :
PLoS ONE; 5/13/2016, Vol. 11 Issue 5, p1-18, 18p
Publication Year :
2016

Abstract

Plant microRNAs are small non-coding, endogenic RNA molecule (containing 20–24 nucleotides) produced from miRNA precursors (pri-miRNA and pre-miRNA). Evidence suggests that up and down regulation of the miRNA targets the mRNA genes involved in resistance against biotic and abiotic stresses. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful technique to analyze variations in mRNA levels. Normalizing the data using reference genes is essential for the analysis of reliable RT-qPCR data. In this study, two groups of candidate reference mRNAs and miRNAs in soybean leaves and roots treated with various abiotic stresses (PEG-simulated drought, salinity, alkalinity, salinity+alkalinity, and abscisic acid) were analyzed by RT-qPCR. We analyzed the most appropriate reference mRNA/miRNAs using the geNorm, NormFinder, and BestKeeper algorithms. According to the results, Act and EF1b were the most suitable reference mRNAs in leaf and root samples, for mRNA and miRNA precursor data normalization. The most suitable reference miRNAs found in leaf and root samples were 166a and 167a for mature miRNA data normalization. Hence the best combinations of reference mRNAs for mRNA and miRNA precursor data normalization were EF1a + Act or EF1b + Act in leaf samples, and EF1a + EF1b or 60s + EF1b in root samples. For mature miRNA data normalization, the most suitable combinations of reference miRNAs were 166a + 167d in leaf samples, and 171a + 156a or 167a + 171a in root samples. We identified potential reference mRNA/miRNAs for accurate RT-qPCR data normalization for mature miRNA, miRNA precursors, and their targeted mRNAs. Our results promote miRNA-based studies on soybean plants exposed to abiotic stress conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
115343320
Full Text :
https://doi.org/10.1371/journal.pone.0155606