Back to Search
Start Over
THE RELATIVE p-AFFINE CAPACITY.
- Source :
- Proceedings of the American Mathematical Society; Aug2016, Vol. 144 Issue 8, p3537-3554, 18p
- Publication Year :
- 2016
-
Abstract
- In this paper, the relative p-affine capacities are introduced, developed, and subsequently applied to the trace theory of affine Sobolev spaces. In particular, we geometrically characterize such a nonnegative Radon measure μ given on an open set O ⊆ R<superscript>n</superscript> that naturally induces an embedding of the p-affine Sobolev class W<superscript>1,p</superscript><subscript>0,d</subscript> (O) into the Lebesgue space L<superscript>q</superscript>(O, μ) (under 1 ⩽ p ⩽ q < ∝) and the exponentially-integrable Lebesgue space exp ((nω<superscript>1/n</superscript><subscript>n</subscript> ∣f∣)<superscript>n</superscript>/<superscript>(n-1)</superscript>) ∊ L<superscript>1</superscript>(O, μ) (under p = n) as well as the Lebesgue space L<superscript>∝</superscript>(O, μ) (under n < p < ∝) with μ(O) < ∝. The results discovered here are new and nontrivial. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 144
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 115642455
- Full Text :
- https://doi.org/10.1090/proc/12980