Back to Search Start Over

THE RELATIVE p-AFFINE CAPACITY.

Authors :
XIAO, J.
ZHANG, N.
Source :
Proceedings of the American Mathematical Society; Aug2016, Vol. 144 Issue 8, p3537-3554, 18p
Publication Year :
2016

Abstract

In this paper, the relative p-affine capacities are introduced, developed, and subsequently applied to the trace theory of affine Sobolev spaces. In particular, we geometrically characterize such a nonnegative Radon measure μ given on an open set O ⊆ R<superscript>n</superscript> that naturally induces an embedding of the p-affine Sobolev class W<superscript>1,p</superscript><subscript>0,d</subscript> (O) into the Lebesgue space L<superscript>q</superscript>(O, μ) (under 1 ⩽ p ⩽ q < ∝) and the exponentially-integrable Lebesgue space exp ((nω<superscript>1/n</superscript><subscript>n</subscript> ∣f∣)<superscript>n</superscript>/<superscript>(n-1)</superscript>) ∊ L<superscript>1</superscript>(O, μ) (under p = n) as well as the Lebesgue space L<superscript>∝</superscript>(O, μ) (under n < p < ∝) with μ(O) < ∝. The results discovered here are new and nontrivial. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
144
Issue :
8
Database :
Complementary Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
115642455
Full Text :
https://doi.org/10.1090/proc/12980