Back to Search Start Over

Optical and Geometrical Properties of Cirrus Clouds in Amazonia Derived From 1-year of Ground-based Lidar Measurements.

Authors :
Gouveia, Diego A.
Barja, Boris
Barbosa, Henrique M. J.
Pauliquevis, Theotônio
Artaxo, Paulo
Source :
Atmospheric Chemistry & Physics Discussions; 2016, p1-25, 25p
Publication Year :
2016

Abstract

For one year, from July 2011 to June 2012, a ground-based raman lidar provided atmospheric observations north of Manaus, Brazil, at an experimental site (2.89° S and 59.97° W) for long-term aerosol and cloud measurements. Upper tropospheric cirrus clouds were observed more frequently than previous reports in tropical regions. The frequency of occurrence was found to be as high as 82% during the wet season and not lower than 55% during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle precipitation. Optical and geometrical characteristics of these cirrus clouds were derived. The mean values were 14.4 ± 2.0 km (top), 12.7 ± 2.3 km (base), 1.7 ± 1.5 km (thickness), and 0.36 ± 1.20 (cloud optical depth). Cirrus clouds were found at temperatures down to -90 °C and 7% were above the tropopause base. The vertical distribution was not uniform and two cloud types were identified: (1) cloud base > 14 km and optical depth ~0.02, and (2) cloud base < 14 km and optical depth ~0.2. A third type, not previously reported, was identified during the wet season, between 16 and 18 km with optical depth ~0.005. The mean lidar ratio was 20.2 ± 7.0 sr, indicating a mixture of thick plates and long columns. However, the clouds above 14 km have a bimodal distribution during the dry season with a secondary peak at about 40 sr suggesting that thin plates are a major habit. A dependence of the lidar ratio with cloud temperature (altitude) was not found, thus indicating they are well mixed in the vertical. Cirrus clouds classified as subvisible (τ < 0.03) were 40%, whilst 37.7% were thin cirrus (0.03 < τ < 0.3) and 22.3% opaque cirrus (τ > 0.3). Hence, not only does the central Amazon have a high frequency of cirrus clouds, but a large fraction of subvisible cirrus clouds as well. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun-photometers and satellite sensors to an unknown extent. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16807367
Database :
Complementary Index
Journal :
Atmospheric Chemistry & Physics Discussions
Publication Type :
Academic Journal
Accession number :
116613477
Full Text :
https://doi.org/10.5194/acp-2016-458