Back to Search Start Over

Effective Utilization of the Electrostatic Repulsion for Improved Alignment of Electrospun Nanofibers.

Authors :
Wu, Yong-Hui
Li, Hai-Peng
Shi, Xin-Xin
Wan, Jia
Liu, Yi-Fan
Yu, Deng-Guang
Source :
Journal of Nanomaterials; 7/12/2016, p1-8, 8p
Publication Year :
2016

Abstract

Uniaxial alignment of electrospun fibers can provide a useful approach to develop novel functional nanomaterials for applications in a wide variety of fields. In this study, a polypropylene- (PP-) coated spinneret and a metal spinneret were utilized to carry out the single-fluid electrospinning processes. A metal rod frame was utilized as the collector to steer the nanofibers. Using polyvinylpyrrolidone K90 (PVP K90) as a filament-forming polymeric model at a concentration of 9% (w/v) in ethanol, the experimental observations and results demonstrated the following results: (1) the utilization efficiency of electrical energy could be improved through the PP-coated spinneret; (2) the texture of collector had a significant influence on the collection of aligned PVP K90 nanofibers; and (3) the combination of a PP-coated spinneret with the metal frame could ensure the electrostatic repulsion forces to play their roles effectively in generating PVP K90 nanofibers with thinner diameters and in collecting uniaxial alignment of them. The mechanisms about the orientation effects of the present method are discussed. This job opens a facile way for producing aligned polymeric nanofibers based on the reasonable manipulation of the interactions between the electrostatic field and the working fluids. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16874110
Database :
Complementary Index
Journal :
Journal of Nanomaterials
Publication Type :
Academic Journal
Accession number :
116771065
Full Text :
https://doi.org/10.1155/2016/2067383