Back to Search
Start Over
Effect of resorption rate and osteoconductivity of biodegradable calcium phosphate materials on the acquisition of natural bone strength in the repaired bone.
- Source :
- Journal of Biomedical Materials Research, Part A; Nov2016, Vol. 104 Issue 11, p2833-2842, 10p
- Publication Year :
- 2016
-
Abstract
- The purpose of this study was to compare the biodegradation rate and quality of regenerated bone among four materials. A short time period of 8 weeks was chosen to examine early bone healing. The rod-shaped implants of commercially available two β-tricalcium phosphate (β-TCP) ceramics with porosity 60% and 71-80%, respectively, laboratory prepared octacalcium phosphate/gelatin composite (OCP/Gel), which has been proven to have a highly osteoconductive and biodegradable property in rat calvarial defect, and gelatin sponge (Gelatin) were implanted in rabbit tibia defect of 6 mm diameter and 7 mm depth for 2, 4 and 8 weeks. Analyses by μCT, histomorphometry and push-in test were carried out to evaluate the extent of the tissue regeneration and the material biodegradation in the long bone. OCP/Gel and Gelatin were completely resorbed but only OCP/Gel induced cortical bone bridge until 8 weeks that has strength compatible to that of the natural bone. β-TCP (71%-80%) and β-TCP (60%) were not completely resorbed and never induced the amount of new bone formation beyond that by OCP/Gel. The results indicate that the new bone having enough strength could be regenerated if the material shows not only higher biodegradation rate but also higher osteoconductivity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2833-2842, 2016. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15493296
- Volume :
- 104
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Journal of Biomedical Materials Research, Part A
- Publication Type :
- Academic Journal
- Accession number :
- 118352639
- Full Text :
- https://doi.org/10.1002/jbm.a.35828