Back to Search
Start Over
Densities of Primes and Primitive Roots.
- Source :
- International Journal of Mathematics & Computer Science; 2016, Vol. 11 Issue 2, p89-108, 20p
- Publication Year :
- 2016
-
Abstract
- Let u ≠ ±1, v² be a fixed integer, let p be a prime number, and let ord<subscript>p</subscript>(u) = d|p - 1 be the order of u mod p. This note provides a lower bound #{p ≤ x : ord<subscript>p</subscript>(u) = p-1} ≫ x(log x)<superscript>-1</superscript> for the number of primes p ≤ x with a fixed primitive root u mod p for all large numbers x ≥ 1. The current results in the literature have the lower bound #{p ≤ x : ord<subscript>p</subscript>(u) = p - 1} ≫ x(log x)<superscript>-2</superscript>, and restrictions on the fixed primitive root to a subset of at least three or more integers. [ABSTRACT FROM AUTHOR]
- Subjects :
- PRIME numbers
INTEGERS
SUBSET selection
MATHEMATICS
NUMBER theory
Subjects
Details
- Language :
- English
- ISSN :
- 18140424
- Volume :
- 11
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- International Journal of Mathematics & Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- 119398857