Back to Search
Start Over
A Comparative Study on Antioxidant System in Fish Hepatopancreas and Intestine Affected by Choline Deficiency: Different Change Patterns of Varied Antioxidant Enzyme Genes and Nrf2 Signaling Factors.
- Source :
- PLoS ONE; 1/18/2017, Vol. 12 Issue 1, p1-21, 21p
- Publication Year :
- 2017
-
Abstract
- The liver and intestine are susceptible to the oxidative damage which could result in several diseases. Choline deficiency induced oxidative damage in rat liver cells. Thus, this study aimed to investigate the potential molecular mechanisms responsible for choline deficiency-induced oxidative damage. Juvenile Jian carp were fed diets differing in choline content [165 (deficient group), 310, 607, 896, 1167 and 1820 mg/kg diet] respectively for 65 days. Oxidative damage, antioxidant enzyme activities and related gene expressions in the hepatopancreas and intestine were measured. Choline deficiency decreased choline and phosphatidylcholine contents, and induced oxidative damage in both organs, as evidenced by increased levels of oxidative-stress markers (malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine), coupled with decreased activities of antioxidant enzymes [Copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)]. However, choline deficiency increased glutathione contents in the hepatopancreas and intestine. Furthermore, dietary choline deficiency downregulated mRNA levels of MnSOD, GPx1b, GST-rho, mGST3 and Kelch-like ECH associating protein 1 (Keap1b) in the hepatopancreas, MnSOD, GPx1b, GPx4a, GPx4b, GST-rho, GST-theta, GST-mu, GST-alpha, GST-pi and GST-kappa in the intestine, as well as intestinal Nrf2 protein levels. In contrast, choline deficiency upregulated the mRNA levels of GPx4a, GPx4b, mGST1, mGST2, GST-theta, GST-mu, Keap1a and PKC in the hepatopancreas, mGST3, nuclear factor erythoid 2-related factor 2 (Nrf2) and Keap1a in the intestine, as well as hepatopancreatic Nrf2 protein levels. This study provides new evidence that choline deficiency-induced oxidative damage is associated with changes in the transcription of antioxidant enzyme and Nrf2/Keap1 signaling molecules in the hepatopancreas and intestine. Additionally, this study firstly indicated that choline deficiency induced varied change patterns of different GPx and GST isoforms. Meanwhile, the changes of some GPx and GST isoforms caused by choline deficiency in the intestine were contrary to those in the hepatopancreas. [ABSTRACT FROM AUTHOR]
- Subjects :
- ANTIOXIDANTS
CHOLINE
VITAMIN deficiency
CELLULAR signal transduction
LEUCINE zippers
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 12
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- PLoS ONE
- Publication Type :
- Academic Journal
- Accession number :
- 120783808
- Full Text :
- https://doi.org/10.1371/journal.pone.0169888