Back to Search Start Over

Controlled Fabrication of Hierarchically Structured Nitrogen-Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst.

Authors :
Zhao, Xianglong
Li, Feng
Wang, Ruining
Seo, Jeong‐Min
Choi, Hyun‐Jung
Jung, Sun‐Min
Mahmood, Javeed
Jeon, In‐Yup
Baek, Jong‐Beom
Source :
Advanced Functional Materials; 3/1/2017, Vol. 27 Issue 9, pn/a-N.PAG, 9p
Publication Year :
2017

Abstract

Hierarchically structured nitrogen-doped carbon nanotube (NCNT) composites, with copper (Cu) nanoparticles embedded uniformly within the nanotube walls and cobalt oxide (Co <subscript>x</subscript>O <subscript>y</subscript>) nanoparticles decorated on the nanotube surfaces, are fabricated via a combinational process. This process involves the growth of Cu embedded CNTs by low- and high-temperature chemical vapor deposition, post-treatment with ammonia for nitrogen doping of these CNTs, precipitation-assisted separation of NCNTs from cobalt nitrate aqueous solution, and finally thermal annealing for Co <subscript>x</subscript>O <subscript>y</subscript> decoration. Theoretical calculations show that interaction of Cu nanoparticles with CNT walls can effectively decrease the work function of CNT surfaces and improve adsorption of hydroxyl ions onto the CNT surfaces. Thus, the activities of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are significantly enhanced. Because of this benefit, further nitrogen doping, and synergistic coupling between Co <subscript>x</subscript>O <subscript>y</subscript> and NCNTs, Cu@NCNT/Co <subscript>x</subscript>O <subscript>y</subscript> composites exhibit ORR activity comparable to that of commercial Pt/C catalysts and high OER activity (outperforming that of IrO<subscript>2</subscript> catalysts). More importantly, the composites display superior long-term stability for both ORR and OER. This simple but general synthesis protocol can be extended to design and synthesis of other metal/metal oxide systems for fabrication of high-performance carbon-based electrocatalysts with multifunctional catalytic activities. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
27
Issue :
9
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
121518024
Full Text :
https://doi.org/10.1002/adfm.201605717